Large Language Models for Code Comment Consistency Checking

Peter Elmers

Goal

Efficiently use large language models (LLMs) to detect comments that are inconsistent with code

Motivation

- Success of LLMs in many areas of natural language research
 - o Including code generation, e.g. GitHub Copilot
- Insight: 83% of professional developer time is spent on code navigation and understanding
 - Thus, the development bottleneck is reading, not writing!
- Motive: Improve code quality by detecting inconsistent comments

Research Questions

RQ1: Can we apply LLMs to classify comment consistency?

- Approach: model fine tuning

RQ2: How well can we generalise the model to languages other than Java?

- 87% of prior research only studied Java!

RQ3: How can we create a benchmark that more closely matches real world situations?

- Approach: mine open source software repositories

RQ4: How do practitioners react to the results of this model in a social context?

- Approach: send pull request comments on GitHub

Feasibility Study Results

1 Epoch Model Test

Why?

- Mitigate risks that LLMs cannot learn the problem, or take too long to train

Setup

- Re-use Java dataset published in previous work
- Train CodeBERT and CodeGen-350M for 1 epoch
- Default hyperpameter choices, no tuning done
- Training Time: **15-30 minutes** on free Colab

Results		[CLS] + Comment	Comment + \n +
Model Type	F1 Score	+ [SEP] + Code	Code
Liu et al. (Random forests)	0.655	CodeBERT	CodeGen
Panthaplackel et al. (GNN-based)	0.706	[CLS] Token Embedding	Final Decoder hidden state
Steiner et al. (BERT)	0.864*		
Our CodeBERT	0.837	Dense Layer w/ 2 outputs	Dense Layer w/ 2 outputs
Our CodeGen	0.843	0/1 Prediction	0/1 Prediction
*: subset score not published, full set used		(BCE Loss)	(BCE Loss)

Case Study: Pull Request Comments

Why?

- Training dataset is mined, may have false examples
- Validate approach to **RQ3**, if a maintainer asks to "update comment" on a pull request, the comment is **probably inconsistent!**

Setup

- Script on GitHub API to download >1 million PR comments (8 hours to execute!)
- Filter text to "update/fix/outdate" + "comment"

Example

Result – method can be used, but **requires care**, does "comment" refer to source code or PR discussion?

Discussion

Knowledge Contributions

- Potential
 - New datasets to spur multi-lingual research (RQ2)
 - Curated benchmark set (**RQ3**) to validate real-world use
- Implementation
 - Reduce technical debt, greater productivity (RQ4)

Ethics

- Avoids many ethical risks of generative models
 - Reproduction of licensed code
 - Existential threat to job security
- Risk Compensation
 - If developers rely entirely on this consistency checker, will they compensate with carelessness?

MSc Thesis Proposal Seminar: Data Mining